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ABSTRACT

Diurnal wind variability within the atmospheric boundary
layer along the coast of the Santa Barbara Channel is
studied by spectral analysis of SODAR (Sound Detection and
Ranging) wind measurements. Rotary spectral analysis is
used to investigate wind circulations -nd oscillations in
the wvertical. Power density spectra. analysis is used to
find freqguencies with the greatest amcunt of kinetic energy.
The results show a tendency for counterclockwise rotation in
the lowest level and clockwise rotation in the upper levels.
Some cases show counterclockwise rotation in all levels.
Most o©f the kinetic energy was concentrated at a diurnal
frequency related to local sea and land breezes. However, a
secondary Kinetic energy maximum is consistently found at a
sub-diurnal frequency. The source of this sub-diurnal
energy in the vertical may be a mesoscale circulation, such

as the Gaviota Eddy or the Catalina Eddy.
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I. INTRODUCTION

The Naval Postgraduate School participated in the South
Central Coast Cooperative Aerometric Monitoring Program
(ecccAMP) experiment, which was conducted within the Santa
Barbara Channel during the fall of 1985. The SCCCAMP field
measurements were intended to appraise the significance of
several processes: the 1local recirculation of pollutants
including the diurnal sea and land breeze cycle, veturn
offshore flow from mountain ridges, surface and upper-level
transport from Los Angeles and the transport and
transformation of shoreline and near-offshore pollutants
({Dabberdt, 1984).

The data collected during the SCCCAMP experiment
included four main categories of measurements, each of which
used differing *types of collection platforms. Upper-~air
meteorolocgical measurements from six rawinsondes and a
network of twelve doppler acoustic sounders were used to
describe mesoscale and microscale features respectively.
Surface meteorological and air quality measurements were
collected from a network of 40 surface wind monitoring
stations. These were located aboard the research vessel
Acania, on deep water buoys, on offshore platform stations

and at shore stations. Boundary laver aerometric and




aerochemetric measurements were collected by two
meteorological research aircraft, three aerometric aircraft
and one laser radar (LIDAR) equipped aircraft. Finally, data
were collected from transport-tracer experiments, using
three perfluorocarbon compounds as tracers and an electron-
capiure yas chromatograph to measure atmospheric sampl.
concentrations released from shore stations, the research
vessel Acania and a single aircraft. (Dabberdt, 1984)

The portion of the SCCCAMP data used for this thesis was
collected by a sodar (sound detection and ranging) station
near Goleta, California. The purpose of this thesis is to
use the sodar data to investigate diurnal atmospheric
boundary 1layer wind structure along the northern coast of
the Santa Barbara Zhannel. The rotational and kinematic
characteristics of the wind field will be examined, using
spectral analysis to determine the existence and freguency
of any prevalent or well defined circulations or
oscillations. This thesis will also consider how synoptic
weather patterns and 1local topography relate to the
observations.

A. THE ATMOSPHERIC BOUNDARY LAYER AND ITS OPERATIONAL

EFFECTS

The part of the atmosphere extending from the surface up
to the upper 1limit of frictional influence of the earth's

surface, or geostrophic wind 1level, 1is known as the




atmospheric bou .:ary layer (ABL). The upper 1limit of the
ABL is generally marked by a subsidence inversion, a type of
temperature inversion produced by adiabatic warming of a
layer of subsiding air. Vertical changes of mean
temperature, humidity and wind at the surface and in the
inversion are much 1larger than hnorizontal changes.
Turbulence in the ABI reduces the vertical changes of these
variables between the surface and inversion.

The ABL is generally divided into sub-layers based on
the characteristics of its vertical structure. The 1layer
within the lower ten percent of the ABL is known as the
surface layer. It is a region of strong vertical changes in
mean quantities, and in the case of horizontally homogeneous
turbulence, it is also a region where fluxes do not change
appreciably with height. The remainder of the ABL above the
surface layer is called the mixed layer for unstable ABL's
and the intermittent layer for stable ABL's. The mixed
layer is a region of nearly continuous turbulence. However,
in the intermittent layer turbulence can be isoclated and may
not persist. (Holtslag and Nieuwstadt, 1986)

The ABL is unstable when there is an upward heat flux;
the air in the surface layer is warmer than the air in the
mixed layer. This produces t-rbulence, ~which mixes
temperature, humidity and other variables. Conversely, a

stable ABL exists when air in the surface layer is cooler




than the air in the mixed layer. This stratification

results in suppressed turbulence. The staole ABL ic

normally an order of magnitude shallower than the unstable
ABL. Over land, a stable ABL is formed by cooling due to the

earth's emission of long wave radiation. Over water, a

stable ABL is formed by upwelling or warm air advection

aloft. (Holtslag and Nieuwstadt, 1986)

The ABL has numerous operational impacts. Changes
in humidity and temperature that occur in the ABL can
influence the propagation of electromagnetic (EM) forms of
energy by causing changes in the index of refraction.
Ducting of EM radiation can occur when humidity decreases
sufficiently rapidly with uneight. Drier air, which exists
over a land mass, can be advected over the sea surface by
land breeze circulations or by the return flcw of a sea
breeze. This 1is a common cause o0of strong surface and
elevated ducts (Beach, 1980). Resulting ducts make possible
a continual downward refraction and reflection cycle of EM
waves that can produce tactically significant over-the-
horizon radar detection, electronic countermeasures and
communications capabilities. More specifically, tactically
vital systems such as fire-control and surveillance radars,
radio, forward-locking infrared (FLIR) scanners and lasers
probably will enjoy better performance as our knowledge of

the ABL's vertical structure improves. Enhancing our




knowledge of the ABL's vertical structure may &allow us to
more accurately forecast phenomena which can attenuate or
even eliminate tactical <capabilities that rely on
optimization of EM propagation. For example, absorption of
aerosols associated with fog, stratus clouds, rain or haze
can significantly degrade voth EM and electro-optical
propagation. Thus, the mesoscale wind structure end related
circulations which occur within the ABL can affect a variety

of naval operations in the coastal environment.

B. THE INFLUENCE OF EASTERN NORTH PACIFIC CLIMATOLOGY
During the fall season, the climate of the eastern North
Pacific region is dominated by a persistent synoptic-scale
feature known as the eastern Pacific subtropical anti-
cyclone. Migratory low pressure systems form in the western
and central Pacific Ocean and move east-northeastward. The
low pressure systems develop as they track southward of the
Aleutian Island chain, then mature and decay in the Gulf of
Alaska. The region north of 40 degrees North 1latitude
experiences the coldest surface air teamperatures, the most
precipitation, the highest frequency of broken or overcast
cloud cover and nearly the highest relative humidity. While
the eastern Pacific subtropical anticyclone keeps the storm
track of migratory low pressure systems north of 40 degrees
North latitude, it also dominates the climate in the area

between 20 and 40 degrees North latitude. This region has




one-third to one-fifth the precipitation and nearly half the
frequency of broken or overcast cloudiness of the storm
track region. The area between 20 and 40 degrees North
latitude also has the lowest mean relative humidity in the
eastern North Pacific. (U. S. Navy , 1977)

The eastern Pacific subtropical anticyclone produces a
synoptic-scale northerly flow parallel to the coast of
California. When winds flow parallel to the coast,
continuity of mass requires the subsurface layers of the
ocean near the coast to experience compensating vertical
motion (Arthur, 1965). The earth's rotation forces the
transport of surface waters away from the shoreline,
allowing for replacement by cooler subsurface waters
(Caldwell, et. al., 1986). The result is upwelling, which
cools the ABL from below and often leads to a stable
stratification. Not surprisingly, the coldest sea-surface
temperatures equatorward of 40 degrees North 1latitude are
found along the coast of California. The cooler water
creates a weak 1local pressure ridge and increases the
thermal gradient between land and sea (Halpern, 1974). On
the eastern edge of the eastern Pacific subtropical
anticyclone, areas just inland of the coast of California
are subjected to heating during the day. The coastal thermal
gradient produced by daytime surface heating of the land and

cooling 2f the sea surface by upwelling frequently results




in the formation of a sea breeze circulation (Johnson and

O'Brien, 1973).

C. THE COASTAL ATMOSPHERIC BOUNDARY LAYER

The coastal ABL is affected by forcing from synoptic-
scale pressure patterns, the constraining influence of
topography, differential heating of the sea and 1land, and
diabatic hzatirng of sloping terrain near the coast. Forcing
by synoptic-scale pressure gradients can have a significant
effect on both atmospheric and oceanic conditions near a
coast. During the Organization of Persistent Upwelling
Structures (OPUS) II experiment, synoptic-scale weather
patterns played a significant role in forcing mesoscale wind
variability (Caldwell, et. al., 1986). Research by
Caldwell, et. al. indicates that nearly 85 percent of the
total temporal and spatial wind wvariability described by an
empirical orthogonal function (EOF) analysis could be
identified with synoptically induced fluctuations. The
previous section of this chapter explains how synoptic-scale
features 1like the eastern Pacific subtropical anticyclone
produce subsidence inversions and upwelling, which in turn
contribute to the formation of a stable ABL and sea breeze
circulations.

The constraining influence of topography can also affect
wind flow &and vertical motion in the coastal ABL. The

coastline itself is an important topographic influence in




terms of mesoscale variability. Since the sea and land
surface roughnesses differ by several orders of magnitude, a
contrast between over-land and over-water roughnesses exists
at a coast. This controls changes in turbulence and affects
wind speed and direction in the ABL (Sethuraman and Raynor,
1978). Gaps in a coastal mountain range can have a
funneling effect, steering the flow of air into a relatively
narrow region, such as a pass or ravine. This funneling is
probable in areas dominated by a low, strong inversion
because the inversion will prevent Lhie sea braeze froa
flowing over a mountain range. Instead, it is forced between
gaps and around the mountain range (Olsson, et. al., 1973).
Finally, the amount of vegetation covering the land along a
coastline can be important. All else being equal, a dry
coastline with sparse vegetation will absorb more heat than
a moist, foliated coastline (Atkinson, 1981). As a result,
an arid coastline can quickly initiate a sea breeze
circulation. Differential heating of the sea and land along
a coast occurs because the sea has a higher heat capacity
than the land. In a relatively clear and calm atmosphere
during the daytime, solar radiation heats the land faster
than it does the sea, generating a horizontal temperature
gradient. The air over the land warms and becomes 1less
dense than the air over the sea. Because the vertical

decrease of pressure is directly proportional to density,




that change is greater in the cooler air over the sea than
it is in the warmer air over the land. So at a constant
altitude above both sea and land, the higher pressure occurs
over the land, and the lower pressure occurs over the sea.
This pressure gradient creates a flow of air from land to
sea and produces convergence over the sea in the upper ABL.
This convergence induces subsidence over the sea, which in
turn causes divergence at the surface and a low-level
onshore flow. The result is an upper-level flow from land to
sea and a near-surface flow from sea to land. The near-
surface flow from the sea 1s known as a sea breeze. At
night, the 1land becomes colder than the sea and the
circulation reverses itself and becomes a land breeze, with
the near-surface flow from land to sea. (Atkinson, 1981)
The presence of sloping terrain near a coast can also
influence conditions within the coastal ABL. An east-west
oriented mountain range running parallel to a coastline
provides a large slope facing the sea. An extensive
southward-facing slope becomes warmer than the inland
plateaus and mountains during the day (Atkinson, 1981). The
alr near the sloping land becomes warmer than the air in the
free atmosphere above the ABL, s0 that pressure increases
away from the slope. A horizontal pressure gradient from
plateau to slope results and an upslope wind is created,

enhancing the daytime sea breeze. At night, the system




reverses, resulting in a downslope drainage wind from air
cooled by advection over a cold land surface. (Atkinson,
1981)

D. THE ATMOSPHERIC BOUNDARY LAYER IN THE SANTA SARBARA

CHANNEL

The ABL in the Santa Barbara Channel is a coastal ABL
that is affected by synoptic~scale systems, topography,
differential heating between sea and land, and diurnal
heating of sloping terrain. As mentioned in the previous
section, analysis of the OPUS II data by Caldwell shows that
85 percent of the wind variability in the Santa Barbara
Channel is due to synoptic-scale forcing. Differential
heating of and land, and topcgraphic influences in the Santa
Barbara Channel only account for six percent and four
percent of the wind variability, respectively (Caldwell, et.
al., 1986). However, the OPUS II data indicate that the
dominant energy in the Santa Barbara Channel is not from
synoptic-scale systems, but is instead due to diurnal and
topographic influences.

The Santa Barbara Channel receives synoptic-scale
forcing from the eastern Pacific subtropical anticyclone,
which creates northerly to northwesterly winds over the
coast of southern California. These winds flow parallel to
the coast between Point Arguello and Point Conception, where

the direction of the coastline changes sharply from north-
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south to <casit-west (Fig. 1). The mountainous coastal
topography in this area causes cyclonic turning of the wind
in the Santa Barbara Channel (Caldwell, et. al., 1986;.
Cyclonic turning of the wind can lead to the formation of a
daytime mesoscale circulation known as the Gaviota Eddy,
which extends from Point Conception to just east of Gaviota
(Dabberdt, 1984). Based on a streamline analysis by
Dabberdt, the Gaviota Eddy has a diameter of about 20 to 25
miles and forms between Point Conception and Gaviota (Fig.
2). Cyclonic turning of the wind also produces westerly
winds in the Santa Barbara Channel that are parallel to the
coast. As explained earlier, these westerly winds lead to
upwelling, which frequently results in the formation of a
sea breeze circulation. As discussed in the previous
section, diurnal heating of sloping terrain can produce
upslope and downslope winds. Along the northern coast of
the Santa Barbara Channel, the Santa Ynez mountain range is
east-west and provides a large sloping surface that faces
equatorward. This sloping surface parallel to the coastline
makes it possible for sea and land breezes in the Santa
Barbara Channel to be enhanced by upslope and downslope

winds, respectively.
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I1. DATA COLLECTION AND ANALYSIS PROCEDURES

The data used for this thesis were collected via hourly
sodar measurements over a six-week period along the northern
coast of the Santa Barbara Channel. Horizontal wind
compcnents at different levels have been plotted together
with inversion heights to evaluate the data quality with
respect to altitude and to serve as an aid in discovering
trends in the data. The basic analysis approach involves
spatial and temporal extrapolation and interpolation for
missing data, plus a combination of gquadratic detrending of
the data and fast Fourier transform (FFT) analysis to obtain
rotary spectra and power density spectra. Interpretation of
the plotted rotary spectra and power density spectra is then
used to infer diurnal vertical wind structure and

variability in the ABL.

A. THE SODAR SYSTEM

Sodar is capable of providing vertical profiles of
horizontal wind vectors (Wyckoff, et. al., 1973). It
operates by transmitting bursts of acoustic energy. After a
burst is transmitted, the receiver is activated and its
output recorded. What sodar basically does is measure the

intensity of backscattered sound, which results from small
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inhomogeneities in the accustic refractive index. This
allows sodar to measure the scattering structures in the ABL
up to the base of the inversion. Sodar works on the
principle that the intensity of backscattered sound is
directly proportional to the strength of the small scale
density £fluctuations. Energy can be returned from a pulse
of sound that is transmitted up into the atmosphere by
scattering from wind velocity or air temperature gradients
(McAllister, et. al., 1969). Echoes from the wind, which is
a moving target, are shifted in frequency by the doppler
effect. The sodar receives and measures the doppler shift
along each transmission axis, yielding a wind measurement
for each radial velocity.

The sodar used to collect the data analyzed in this
thesis was an Echosonde III system manufactured by the
Radian Corporation of Austin, Texas. It operates by
emitting 2-KHz pulses of 100 ms duration in succession from
three antennas. The use of three antennas permitted the
three components of the velocity field to be retrieved. One
axis was oriented vertically, while the other two antennas
were oriented west and south at 18 degrees off zenith.

(Shaw, et. al., 1986)

B. MEASUREMENT SITE
The Naval Postgraduate School sodar station was located

at the foot of the Ellwood pier at 34 degrees, 25 minutes,

15




20 seconds North latitude and 119 degrees, 55 minutes, 43
seconds West longitude, just west of Goleta, California. A
20-meter high meteorological instrument tower was located at
the head of the Ellwoocd pier, 450 meters from the shoreline.
(Shaw, et. al., 1986) The surrounding topography is
dominated by the east-west orientation of the Santa Ynez
mountain range, which runs parallel to the northern coast of
the Santa Barbara Channel and is only a few Kkilometers
inland from the coastline. To the north of the Santa Ynez
mountains are the Santa Ynez and Santa Maria valleys. The
northern shore of the Santa Barbara Channel is almost
continuously lined with bluffs. In the immediate vicinity
of the head of the Ellwood pier there was a 30-meter gap
between two large bluffs, which rose to a height of 30
meters and were 10 meters away from the shoreline (Fig. 3).
The shore is oriented in such a way that southeasterly to
southwesterly winds can reach the land on a trajectory which
lies purely over water, possibly passing over the Santa

Barbara Channel Islands 50 kilometers away.

C. TREATMENT OF THE DATA

The sodar data were collected during three periods of
continuous system operation in 1985: from 8 to 12 September,
from 21 to 29 September and from 6 to 11 October. The sodar
was inoperative between 13 and 19 September. Other days of

the data collection period not included in the analysis are
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Local Topography near the Sodar site includes
two 30 meter high bluffs located ten meters
ashore, with a gap between the bluffs only a
few meters from the Scdar site.
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days which are missing three or more consecutive hours of
data at all 20 vertical measurement levels. Since one of
the main purposes of this thesis is to investigate diurnal
wind structure, data gaps of three or more hours are
unacceptable, because extrapolation or interpolation over a
three-hour period of missing data could yield misleading
results.

The data from the sodar consist of wind speeds and wind
directions at 20 vertical 1levels over 120-, 216- and 144-
hour periods, respectively. A FORTRAN computer program
converted the raw data into u and v wind components and used
data at adjacent heights in the vertical to 1linearly
extrapolate or interpolate in the vertical for missing data
at any given level. The computer program did not attempt to
process large blocks of missing data over three or more
congsecutive levels. In those cases where the computer
program could not wvertically extrapolate or interpolate, a
second computer program used the spatially adjusted data
from the output of the first computer program to temporally
extrapolate or interpolate for missing data at any given
time. Like the first computer program, tlie second computer
program did not attempt to process large sections of missing
data over three or more consecutive hours. After both
spatial and temporal extrapclation and interpolation of the

raw data, there were a few blocks or groups of missing data,
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but the number c¢f these missing data were relatively small
in size and number in comparison to the overall processed
data. Periods which still had groups of missing data were

omitted.

D. EVALUATION OF TIME SERIES

Time series of the horizontal wind components, u and v,
for all twenty vertical 1levels, are plotted simultaneously
on six plots for the periods 8-12 September, 21-29 September
and 6-11 October 198. Time series of the mean horizontal wind
components, u and v, and perturbation horizontal wind
components, u1 and vl, are individually plotted at each
vertical level (Figs. 4, 5, 6, 7, 8 and 9). On the abscisse
of these plots, times of 0, 24, 48, etc. correspond to
midnight 1local standard time. From 2 to 10 hours is
considered to be morning, from 10 tc 18 hours is afternoon,
and from 15 to 2 hours is evening. The sodar backscatter
intensities were vtecorded on a 1line printer display
terminal. This display was used to estimate inversion
height (Shaw, et. al., 1986), which is represented on each
figure by dashed lines. Examination of these figures allows
us to reach several conclusions regarding the gquality of the
data. First, above 250 meters (or the tenth vertical
level;, the data become significantly less coherent with
height. Second, data measured at levels ahove the inversion

height are generally of a highly variable nature. Sodar

19




1y

— 'h;i u.?{i '}'n"'_u!a ””'T' " *rﬁ) '|"’—'2;‘—’—:? ] ]
@] » 1 O ) : € " ‘-(-’ 8”\ r-! ‘3 ‘“ dl'i‘. 'Ir ll;{‘ :(: ()(8‘ >‘(6 ll <]j4
i’? h R\ o 'l" ’Il "“x &‘il) ( © % ‘ Z
L A
?ﬁ' -r'k (J] N l‘k“-f"’xx g
a W S S T e I |
ML Loy [ LI & if !
WR e
W R R e
AIRED ARE
- - A > N %
.- : K t l») O. %
a g& «14"' ’n ;} J"’ 'g é
AU SR (-‘?) 5,9 %
' M R :
Wow ot L 2 I
'énl ;Q ""v' + ' 'igl5 lll f ;j o:
CX -?l { L» G
’ ‘)z .'% VoY S S
At -;| 'Ilvl- "l 1 ‘6 ;;
s{ﬁ \ {{fk 11\ J:r- ’}ﬁ [ % E
NP 3
BT R N A A
PR
g ?e [l H "D%, "-x ’p ’ B f.‘ (; ;‘?
55' SR T AU A R M g 2
i H W’y "’%J & \“5 W 'ﬂl NERE |
ll i (.’ RN 2y | } 1 2 ; K 5 o
]Il A 'lil\ (r!\) § H\ {{.; ‘/ % s U ;:’,;»{{ }l’-. ke 6}/ $
(! o4 e N . A e A )l’ i" PRIEE LS LN SN ¢
re - U o * g o ’4 d o ! }' 5 ‘s & l
S O, o, e B d M}i' S N (O S T SR
T, [ R U i L A > 5 <
}l})r x ) (}lll H(’ {\.J Hb;wm :‘,}' ’;g‘ i ’iv“ 1"" ‘0. ‘(}%\" "{ g’,(} x’x $'| <
{ 3 l - ) . il 2 1> o7 b4 <
”1[1 ':” Mo ’8 'r’{ % 'ﬁ[{u 'f?}' W- b o w Lf!) Ty, y& 5’{"” <§
W g }[ '(c‘),.o }.1}"‘”1-3 M md“ "(‘:;,‘ K . ")t-)é:x- 2, 4 / f f"
I".L £ rl((‘ ° l&w“.(”mm Qéi __\n .l‘ﬂv'{'?"« j é)H I {’,, ’ )' ‘l ‘;lj
' H . 4 ‘H i ATl L (": ({, : it
Hf[ll‘ Ui ', : ‘;51 2, !u;””'ﬁ'm i, B by -“;3 ‘ll’ 6% l' :
') ‘ It o M n', B *aih T T
gy al g ¥ “ % S i d'. é; R E N
: - LIH’H g;.'”’ qﬂ ‘P) m 7]5 ' A . {'HH!'[\ t 0—_/.‘.: RS ( E
0N 1 ’H it o ””m :ﬁa Fm k “' ,"‘i’ v'%"’ 58 ’( Zj
"nl e, O, ne@ il ot T Tk
0 i} "‘“ v .%J N } f!ln v g ‘} u‘z’» lh’"c,()‘ ‘; '»"- {(i
' «44‘( »-” iy } I § Y ﬁ
'“*1 "0 {> ., t g ”n i}\ "cr;éi @ f \H 'éz [’f! S, v
. ; é (I“ l) . r,‘ o >
- ,(["“ v 3 :5'\ ;ﬂﬁ o " oy i, m,"' 2, . "
[VIREI Y H (1§ 0 HH " (l I [IDRR e 1" | (I noll nn/
(TR Z0 e o by b 210800
Figure 4. Horizontal Wind Vector {(M/Sec):

20

[) Uf

18 M/SFS—-
[Rin
kg
QW
%\ (’I” q
| }}
s
g ;(O
|
z%j_
!
AiE
{

a9’ (ll—

U

233

HOUR

TIMO L
S

PO




ri—=

0°064¢

m; Yl
0 05¢% 0°0t¢

Figure 5.

A A%
000
XKoo

O
]
oY

J’ x hi
o %
LN X, -_s
_\é/:_k\x_,

.
i mx"x‘yx\)@m

<

P 000,

X -+
X +
S ' §
|2 ~
PRI S
e &
(e} »
< A
4] y
&

N AN
!

0 2wt ; ' Y .

gl c ot e x
PR T TR S T
0 Gs” (SN0t 0061 0451 g ntt 30/
A E LS A O A M 2T O

Horizontal Wind Vector (M/Sec):

21

v




SN GRVIN L z«»&ﬁ;ﬁéﬂk ORI g,
. P

xﬁ?ﬁ&?&%ﬁ%XZﬁ%&f&£§§%§”W

- N ; !
o L SN NNy, )
S ‘?QM%E§E§§%JE%5QQZ kﬁgﬁﬁﬁﬁiééﬁvn

~
S A -=

‘ e N
X iﬁﬁﬁBﬁkE?FkEﬁ%E%ﬁ%Lﬁﬁﬁﬁ.u

FARINE

NHIH

JOHIA

L5 /100H0

(1

U

Horizontal Wind Vector (M/Sec):

Figure 6.

22




AR

SCTASZTDMOLOIOA (NTH

A

\Y

Horizontal Wind vVector (M/Sec):

Figure 7.

23




(SEM0RSWIL
Q" vhlg 0°0Z1 096 0t G gk o cs

by p 4.114.f++++4++&:.r§f -~ - ....11!117}} ....111 ..\3:.044&1‘ L..Iu_‘+.1.1+ . s A Axr..\.zzz.r...*l.ra)‘
x

x%i&t%?%8&f&£&k5&¢¥§&§&kix?iiﬁfﬁJ%(&ﬁ?&yz%388%888¥ N peotoom O, e aae U

g%% %% &v %8080.““ PR g%é&a A%gﬁtoonuﬂﬂu (//.Hanu g{’} ,ugvéun -~ 00

&B%f&ﬁ@ﬁ&%?ﬁéﬁﬁpﬁ%sk:$u\REBPV$K§§? 6%§$Bkk§f§¢r t%ﬁt!&ftfkﬁﬁ.v:,kx o

: . & . 2
2 S%v 2. % g o 9 § - IN
g gg B 2l o B e gur  TE oy =
g 5 e g § R > s C
B2 ® *-} ke d ® [ 4
a ° omwmnq‘ ol v o i .%Ile Rl ™ FJ! L
g a [ ] —n =
oeE O o o @ Ui L0 S0 R ¢ 135
% 2° oo & = o o © S |
nnom o0 gy P T eg S T
u! o Uy =
s o a Xy

Dl 3 n o L —— (=}

Doll Da ° 0 nm . o
.0 %ﬁ% Bs 3] 5 LE
] fo) G <

o]

ARG QU 21 et

1N

CRREN

{1

U

Horizontal Wind Vector (M/Sec):

Figure 8.

24




ff.#ff?f.v ++T1+‘1f§.‘11141.+f1 1+fﬁ|1.1..1.v .t.ttlf g JEL gt .1..1. T FEIDRRIRE et At 4H
s + .

A1 0 g D o

0N ngz
SHOAS/HPA0LDIN ONTH ZTan

001t 07 0e¢

0°05¢

—— === 7R Ry

0" 068

A

v

Horicsontal Wind Vector (M/Sec):

Figure 9.

25




systems experience difficulty in measuring the wind
structure above the inversion because of a 1loss of
backscattered power due to the 1low turbulence 1level.
Because of the loss of signal at the upper levels, only the

lowest ten levels were processed in the spectral analysis.

E. SPECTRAL ANALYSIS OF THE DATA

All of the segments are of 64 (26) hours to accommodate
the fast Fourier transform us=d in spectral analysis of the
data. For analysis purposes, the 8 to 12 September 1985 data
collection period is divided into two segments. Segment one
covers hours O through 63 and segment two covers hours 57
through 120. Since the 8-12 September collection period is
only 120 hours 1long, a seven-hour overlap of the two
segments is necessary to keep the length of the segments
fixed at 64 hours. The 21-29 September period is divided
into segment one, which covers hours 0 through 63, segment
two, which covers hours 64 through 127, and segment three,
which covers hours 128 through 191. The 6-11 October period
is divided into segment one, which covers hours 0 through
63, and segment two, which covers hours 64 through 127.

Since the fast Fourier transform method was used as part
of the analysis, it was first necessary to detrend the data
to avoid producing artificial discontinuities during
analysis and to improve the statistical stability of the

frequency contributions of wind variability (Bingham, et.
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al., 1967 and Chatfield, 1984) Since the variation of the
mean wind components was not linear over each Fourier
transform period, a quadratic trend was calculated over each
of the continuous segments in order to obtain mean u-
component and v-component values. The perturbation u and v
values were obtained by subtracting the mean values (trend)
from the original values.

Two tvpes of spectral analysis are used to study the
variability of the u and v components. A power density
spectrum represents the distribution of variance of a
variable over frequency (Chatfield, 1984). In our case, the
variables of interest are the u and v wind components, where
the kinetic energy of the wind fluctuations is proportional
to the wvariance. A rotary spectrum is a representation in
frequency space of the power density spectrum of a two-
dimensional vector time series (O'Brien and Pillsbury,
1974). The asymmetry of the rotary spectrum about the zero
frequency may be used to infer rotational characteristics of
the wind vector at various frequencies. The degree of
asymmetry about the zero frequency indicates the degree of
vector rotation. If the rotary spectrum has a peak at a
positive frequency and a zero amplitude as the corresponding
negative frequency, then pure clockwise rotation exists at
that frequency. Conversely, there is pure counterclockwise

rotation associated with a similar peak at a negative
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frequency. If both the negative and positive frequency
peaks have equal amplitudes, then there is no net rotation
and instead there is pure oscillation. The sign of
frequency that can be assigned to the clockwise or
counterclockwise vector rotation is arbitrary. The
convention choser for this thesis is such that if the
rotaticii is wiewed with the u-component increasing towards
the right and the v-component increasing upwards, then
clockwise rotation corresponds to spectral peaks of positive
frequencies and counter-clockwise rotation corresponds to
spectral peaks of negative freguencies.

This thesis intends to interpret power density spectra
and rotary spectra analyses to explore the wvertical
structure of the wind in the ABL in the Santa Barbara
Channel. By using spectral analysis in tandem with
inspection of the time series of the data, this thesis seeks
to determine dominant regimes in the wind structure, the
strength and frequency of sea and land breezes, the effect
of synoptic-scale weather features on sea and land breezes,
the influence of mesoscale cyclonic circulations, and the
influence of topography near the sodar and rotation of the

wind in the vertical.
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III. PRESENTATION OF RESULTS

A. EVALUATION OF THE LOW-LEVEL WIND FIELD DURING SCCCAMP

Synoptic-scale surface analyses indicate that the winds
in and around the channel are normally westerly at 10 knots
Oor less. The sodar data did not agree well with the
synoptic data. This was especially true during the
afternoon, when the sodar indicated an overwhelming
northward wind component. At the same time, the synoptic
data consistently showed eastward winds in the Santa Barbara
Channcl. At other times of the day, the synoptic winds were
light and variable, which precluded any direct comparison
with the sodar data. Also, the density of the synoptic data
in the vicinity of the Santa Barbarsa Channel is coarse when
compared to a single sodar station, which makes direct
comparisons between the synoptic data and the sodar data
very difficult.

From 8-12 September 1985, the synoptic analyses indicate
southern California was affected by high pressure ridging
associated with the eastern Pacific subtropical anticyclone.
National Weather Service synoptic surface analyses indicate
that early on 9 September, the Santa Barbara Channel was
affected by a cold frontal passage (Fig. 10). This frontal

passage interrupted the persistent northwesterly flow from
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the eastern Pacific subtropical anticyclone. After the cold
frontal passage, the persistent northwesterly winds off
southern California returned. In segment one, the inversion
height is relatively low and ranges from level 5 to level 9.

During segment two, the inversion height varies between

levels 10 and 20 (Fig. 4). During the 8-12 September
periocd, each segment shows differing wind component
patterns. Segment one shows eastward and northward

components of 3 m/s in the morning and the resultant wind is
northeastward. In the afternoon, there is a westward
component of 2 to 5 m/s and a northward component of 7 to 8
m/s, and the resultant wind is north-northwestward. In the
evening, there is a westward component of 2 to 4 m/s and a
northward component of 1 to 2 m/s. The resultant wind is
west-northwestward. Segment two during the morning
indicates an eastward component of 4 to 5 m/s and a
northward component of 0 to 2 m/s. The resultant wind is
east-northeastward. During the afternoon, there is a
westward component of 3 to 6 m/s and a northward component
of 9 to 11 m/s (Fig. 11). The resultant wind is north-
northwestward. In the evening, there 1is a westward
component of 3 to 5 m/s and a southward component of 4 to 5
m/s, and the resultant wind is southwestward.

During 21-29 September the synoptic analyses (Fig. 12)

indicate southern California was dominated by a thermal
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trough, and weak synoptic flow. There were no frontal
passages over southern California during this period. In

segment one the inversion height is relatively high, ranging

from levels 9 to 12. The inversion height 1lowers
appreciably during segments two and three, when it ranges
from levels 5 to 9 (Fig. 7). In the morning, segment one
shows eastward (Fig. 13) and southward wind components of 3
to 6 m/sec, and the resultant wind is southeastward. During
the afternoon, there is a westward component 2 to 4 m/secC
and a northward compcocnent of 4 to 5 m/sec, which yield a
northwestward resultant wind. In the evening there is a
westward component of 1 to 2 m/sec and a southward component
of 0 to 3 m/sec. The resultant wind is south-southwestward.
Segment two indicates a morning eastward wind component of 2
to 6 m/sec and a southward component of 2 to 7 m/sec, with a
resultant southeastward wind. During the afternoon, there
is a westward component of 1 to 4 m/sec and a northward
component of 2 to 4 m/sec, which produces a resultant
northwestward wind. In the evening, there are eastward and
westward components of 1 to 2 m/sec, and a southward
component of 4 to 6 m/sec. The resultant wind is south-
southwestward. Segment three shows an eastward component of

2 to 6 m/sec, plus southward and northward components of 2

to 3 m/sec during the morning. The resultant wind 1is
eastward. In the afternoon there is a westward component of
34




Figure

EQ%
S oA
A7
g | °
g e
- ; i ) 9 e
: go! - & . - 0T
L S . o 1o )
: . : b = B 4 ; = o ' e =
} (___)oé.. [T yg o
Rels e €-"g  ooc B °
g T E v ofo S OOz,
[ E o g @ C= t} ° ;
g &~ .PocA\',"’
) o o ]
!s D°J / 25
(I s
£z = :
s oz l
s f i
R |
P |
;L |
= g — ,
r c.c H.C 10.C Ta.¢
L TIMT (HOURS) SCr21-29 LEVEL 6 1
: |
4
L —
13. A Time Series of the u-component indicates

positive, -u or eastward wing components,
during the morning period.

35




1 to 5 m/sec and a northward component of 4 to 5 m/sec,
which yields a north-northwestward resultant wind. During
the evening there is a westward component of 1 to 3 m/sec
and a southward component of 2 to 3 m/sec. The i1esuitant
wind is southwestward.

From 6-11 October, synoptic analyses show that southern
California is in a thermal trough, except during 8 October,
when a cold front passed through the area (Fig. 14). During
segment one, the inversion height is fairly iow, ranging
from levels 7 to 9 (Fig. 9). Inversion height data are not
available for segment two. In segment one and during the
morning, there is an eastward wind component of 3 to 5 m/sec
and a southward component of O to 5 m/sec. The resultant
wind is southeastward. During the afternoon there is a
westward component of 3 to 6 m/sec and a northward component
of 10 to 11 m/sec, which produces a resultant north-
northwestward wind. In the evening, there is a westward
component of 2 to 3 m/sec and a southward component of 3 to
4 m/sec, which yields a southwestward resultant wind.
During segment two and in the morning, there is an eastward
wind component of 3 to 5 m/sec and a southward component of
2 to 5 m/sec. During the afternoon, there is an westward
component of 3 to 6 m/sec and a 10 to 11 m/sec ncrthward

component. The resultant wind is north-northwestward. In
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A Second Cold Frontal Passage Affected the
Santa Barbara Channel during 6-11 October.

37




the evening there are westward and southward components of 3
to 5 m/sec, producing a southwestward resultant wind.
During the morning, resultant winds range from northeastward
to south-southeastward and are being influenced by a

persistent synoptically-driven eastward wind component in

every segment. Afternoon resultant winds range from
northwestward to north-northwestward. Apparently, the sea
breeze is being deflected to the west. The cause of the

westward wind component in all seven segments is not known.
In the evening, resultant winds range from south-
southwestward to southwestward, with the exception of one
segment, when the resultant wind is west-northwestward. It
appears that the land breeze is being deflected westward by
Coriolis force. The sea breezes are twice as intense during
periods that experienced cold frontal passages (7-11 m/sec),
compared to the period when there were no frontal passages
(2-5 m/sec). The v-component was much stronger during 8-12
September and 6-11 October and much weaker during 21-29
September. The observations concerning the sea breeze
(northward flow) and land breeze (southward flow) in the
Santa Barbara Channel region agree fairly closely with those
made by Caldwell, who used data from the OPUS II experiment.
After being interrupted by a cold frontal passage, the
synoptic northwesterly flow once again begins to re-

establish itself. At the beginning of a northwesterly wind
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event, or after a frontal passage, the sea breeze becomes
strong (Caldwell, et. al., 1986). As the northwesterlies
re-establish and strengthen, they create synoptic-scale
subsidence and clear skies, allowing for increased solar
heating of the land during the daytime, which initiates a
sea breeze circulation (Caldwell,et. al., 1986).

The northward wind components of about 11 meters per
second that occurred after the 9 September and 8 October
frontal passages are large values for a pure sea breeze.
Southward wind components ranging from 4 to 6 meters per
second that occurred during all three periods may be
considered to be significantly large values for a pure land
breeze. Data on the 1land breeze are scarce, although
definite surges of the land breeze of up to 5 meters per
second have been observed in the tropics (Atkinson, 1981).
The cold frontal passages affecting the Santa Barbara
Channel during the SCCCAMP experiment were relatively weak,
with a temperature contrast of 3 to 4 degrees Fahrenheit.
Thus, it is quite possible that the large values noted for
the northward and southward wind components were not caused
solely by sea and land breezes, but by sea and land breezes
enhanrced by upslope and downslope winds, respectively.

There are three persistent features in the wind
structure during all of the segments. In the morning, an

eastward wind component exists nearly every day in all ten
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of the lower levels (Figs. 4, 6, 8 and 13). During the
afternoon, a northward wind component is evident each day in
all ten levels (Figs. 5, 7 and 9). In the evening, a
southward wind component is present in almost all ten of the
lower levels every day during the 8-12 September and 6-11
October periods (Figs. 5 and 9). The evening southward wind
component is also evident on a daily basis during the 21-29
September period, but is not always present in the lowest
three levels (Fig. 7). National Weather Service surface
analyses (Fig. 14) indicate that the persistent
northwesterly flow off the cocast of southern California was
interrupted by a second cold frontal passage on 8 October.
Note how much more pronounced the northward and southward
wind components become on the day before, during and after
the frontal passage occurred (Fig. 9). This observation
differs from results by Caldwell et. al. (1986), which
indicate that the sea and land breezes do not intensify

until the day after a cold frontal passage.

B. POWER DENSITY SPECTRA OF THE U-COMPONENT

For the 8-12 September period, there are similar energy
distributions for segment one and segment two. Both
segments show a dominant peak at the one cycle per day
frequency in all levels, with the largest sub-diurnal peak
at two cycles per day in the lower five levels (Figs. 15 and

16). This pattern exists at almost every level. The main
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Power Density Spectrum (of U) (M**2/S*%*2)
September 8-12, 1985, Segment 1
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difference between the two segments is that there is
considerably more energy in segment one, as indicated by its
stronger power density spectra peaks at one cycle per day
(Fig. 15).

During 21-29 September 1985, the dominant peak in all
three segments is at the diurnal frequency of one cycle per
day in all levels (Figs. 17, 18 and 19). However, there is
no dominant sub-diurnal peak at any frequency in any of the
segments.

In segment one of the 6-11 October period, the dominant
peak appears at two cycles per day in all 1levels, with a
secondary peak at one cycle per day in almost every level
(Fig. 20). Segment two indicates dominant peaks near one
cycle per day in all levels, and a secondary peak at two
cycles per day in the lower six levels, which progressively
weakens with height (Fig. 21).

The dominant peak at the one cycle per day frequency in
six of the seven segments and in all levels suggests that
most of the energy in the ABL is related to the diurnal sea
and land breeze cycles. This agrees with results from
Caldwell, et. al. (1986), which state that diurnal
influences are a dominant energy source in the Santa Barbara
Channel. Dabberdt (1984) mentions that the Gaviota Eddy, a
mesoscale circulation, often forms in the Santa Barbara

Channel (Fig. 2). Wakimoto (1987) discusses the Catalina
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Power Density Spectrum (of U) (M**2/S**2)
September 21-29, 1985, Segment 1
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Power Density Spectrum (of U) (M**2/S%%2)
September 21-29 1985, Segment 3
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Eddy, which extends into the Santa Barbara Channel (Fig.
22). The shifting of these eddies with time in the Santa
Barbara Channel may be related to the prevalent sub-diurnal

frequency peaks observed at two cycles per day.

C. POWER DENSITY SPECTRA OF THE V-COMPONENT

During 8-12 September 1985, segment one shows a strong
peak at one cycle per day that increases significantly with
height in all levels (Fig. 23). There is a secondary peak
which varies slightly in frequency from 2 to 2.5 cycles per
day and intensifies with height in all levels. In segment
two, there is an extremely large peak near the one cycle per
day frequency, which may be related to the 9 September cold
frontal passage (Fig. 24). There 1is also a secondary peak
between the zero and one cycle per day fregquencies, but it
is extremely small in amplitude compared to the one cycle
per day peak and is apparently due to noise in the data.
From 21-29 September, two patterns are evident. In segment
one, the one cycle per day peak intensifies with height and
no prevalent sub-diurnal peak is present (Fig. 25).
Segments two and three show a pattern opposite to that of
segment one (Figs. 26 and 27). The one cycle per day peak
weakens with height as a two cycle per day peak intensifies
with height. For the 6-11 October period, each segment has
its own energy distribution pattern. The one cycle per day

peak weakens with height as the two cycle per day peak




An Isentropic Analysis by Wakimoto (1987)
depicts the Catalina Eddy and its influence in

the Santa Barbara Channel.

Figure 22.
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intensifies with height (Fig. 28). During segment two an
extremely large peak dominates at one cycle per day in all
levels, with a secondary peak at two cycles per day (Fig.
29). As is true for the power density spectra analysis of
the u-component, the dominant peak in most of the segments
exists at the one cycle per day fregquency, which reinforces
the suggestion made in the previous section that the diurnal
sea and land breezes contribute most of the energy found in
the Santa Barbara Channel's ABL. As 1is seen for the u-
component, the power density spectral analysis of the v-
component also shows a prevalent sub-diurnal peak near the
two cycles per day frequency, and again could be related to
a8 mesoscale eddy, as was suggested in the previous section.
There is significantly more energy in the v-component than
in the u-component. The power density spectra peaks at the
one cycle per day frequency for the v-component are much
larger than their counterparts for the u-component, which
reflects the fact that the dominant energy is in the diurnal
sea and land breezes. Another interesting result is that
there is much more energy in the v-component during the 8-12
September and 6-11 October periods, when cold frontal
passages affected the Santa Barbara Channel. During the 21-
29 September period there were no frontal passages and the
v-component spectral analysis indicates relatively small

peaks at the one cycle per day frequency. This agrees with
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Caldwell, et. al. (1986), who state that cold frontal
passages in the Santa Barbara Channel can enhance the sea
breeze circulation. In three of the segments (segments two
and three of 21-29 September, and segment one of 6-11
October) the one cycle per day peak weakened with height as
a sub-diurnal two cycle per day peak intensified with
height. Atkinson (1981) mentions that the diurnal sea
breeze weakens with height. Also, the inversion height is
noticeably shallower during these three segments (Figs. 7
and 9), and may be indicative of a less vertically developed

sea breeze circulation.

D. ROTARY SPECTRA

There are different rotational patterns for each segment
during the 8-12 September period. In segment one, the
rotation changes from counterclockwise in 1level 1 to
clockwise with height (Fig. 30). During segment two, the
rotation is counterclockwise in every level (Fig. 31).

From 21-29 September, the segments again show differing
rotational patterns. In segment one, the rotation changes
from counterclockwise in level 1 to clockwise with height
(Fig. 32). The trend in segment two 1is exactly the
opposite; the rotation changes from clockwise in level 1 to
counterclockwise with height (Fig. 33). In segment three

there is counterclocKkwise rotation in the lower four levels,
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but in levels 5, 6 and 7, there is too much noise in the
data to determine the net rotation (Fig. 34).

In the 6-11 October period, each segment has a similar
rotational pattern. Both segment one (Fig. 35) and segment
two (Fig. 36) show changes in the rotation with height from
clockwise to counterclockwise.

Overall, there appear to be three main trends in the
rotary spectra analysis. First, there is a strong tendency
for counterclockwise rotation in level 1. Six of the seven
segments indicate counter-clockwise rotation at this 1level.
Second, two of the segments show counterclockwise rotation
in nearly every level. Third, above level 2 there is a
strong tendency for clockwise rotation in most of the

segments.

E. DISCUSSION OF RESULTS

The area in the Santa Barbara Channel where the sodar
collected the data was dominated by sea and land breezes.
The power density spectra analysis shows that considerably
more energy is concentrated in the v-component than in the
u-component and that most of the energy is centered near a
frequency of one cycle per day, the frequency of the diurnal
sea and land breeze circulations. Inspection of the time
series of the v-component also reveals that a sea and land
breeze was occurring on a daily basis. There are periods

when the sea and land breezes undergo large increases in
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magnitude. These coincide with periods when the Santa
Barbara Channel experienced cold frontal passages. However,
many of the values for the northward and southward wind
components are so large that it is unlikely they are due
purely to sea and land breezes, respectively. Given the
topography and geography of the Santa Barbara Channel
region, it is likely that the sea and land breezes were not
only enhanced by the cold frontal passages, but also by
upslope and downslope winds.

Examination of time series of the horizontal wind
components at each vertical 1level reveals three main
features in the wind structure. During the morning there is
an eastward wind component, in the afternoon there is a
northward wind component and during the evening there is a
southward wind component. During the morning, <he
predominant eastward component combines with northward or
southward components, so the resultant wind in the morning
ranges from north-eastward to south-southeastward.
Likewise, the resultant wind during the afternoon ranges
from northwestward to north-northwestward, and the resultant
wind in the evening ranges from south-southwestward to
southwestward. Inspection of time series of the data
indicates the morning is a transition period between the
evening land breezes and the afternoon sea breezes. In the

morning there is a synoptically-driven eastward component,
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when neither the sea or land breeze circulations have
developed.

The rotary spectral analysis shows a strong tendency for

‘. counter-clockwise rotation in level 1 and in all of the
levels for two segments. In the other five segments, the
rotary spectra analysis indicates a strong tendency for
clockwise rotation above level 2. The clockwise rotation of
the sea breeze with time has been historically postulated by
Haurwitz (1947), Frizzola and Fisher (1963), and Orlic et.
al. (1988). Orlic et. al. (1988) state that sea breezes can
rotate counterclockwise when modified by topographically
induced flows.

The main secondary peak in the power density spectra
analyses of the u and v wind components, in terms of number

. of occurrences and amount of energy, is the sub-diurnal peak
at the two cycles per day frequency. The source of this
persistent sub-diurnal peak may be related to the movement
of +the Gaviota Eddy or Catalina Eddy with time.

The regional topography along the northern part of the
Santa Barbara Channel may have also influenced the wind
recorded by the sodar station. The Santa Ynez mountains are
oriented east-west and run parallel to the coast of the
Santa Barbara Channel. The synoptically-driven north-
westerly flow off the coast of southern California backs to

v westerly (eastward) in the Santa Barbara Channel, as it
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reaches the western part of the Santa Ynez mountain range
(Caldwell, et. al., 1986). The National Weather Service
analyses presented earlier support this conclusion and
eastward wind components observed in the time series of the
u-component also support cyclonic turning of the wind around
Point Arguello and Point Conception. This cyclonic turning
of the wind leads to the formation of a cyclonic, mesoscale
eddy in the lee of Point Conception, known as the Gaviota
Eddy (Dabberdt, 1984). The power density spectra
consistently indicate the presence of a sulr-diurnal energy
peak centered at or near two cycles per day, which may be

attributable to the movement of the Gaviota Eddy over time.
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IV. SUMMARY

A. REVIEW OF ANALYSIS PROCEDURES

Sodar wind data consisting of wind speeds and directions
at 20 vertical 1levels have been analyzed to investigate the
structure of the coastal atmospheric boundary layer. Wind
variability is examined by using time series, synoptic
weather analyses, power density spectra and 1otary spectra.
The data for this analysis were first prepared by converting
the wind speed and direction data to east (u) and north (v)
vector components. The data were then linearly extrapolated
or interpolated, as appropriate, in space and time to
produce unbroken time series at each of the 20 measurement

altitudes from the surface to 525 meters.

The fast Fourier transform method was used as part of
the data analysis, so it was necessary to detrend the data
to avoid artificial data discontinuities and improve the
statistical stability of frequency contributions to wind
variability. A guadratic trend is removed to obtain mean
and perturbation u and v component values from the original
values. Power density spectra have been computed to
investigate the strength and frequency of the sea and land
breezes, the effect of frontal passages on the sea and land

breezes, and the possible presence of sub-diurnal phenomena.
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Rotary spectra are used to find rotational characteristics
of the wind components at various frequencies and the
possible effect of the rotation of the sea breeze

circulation.

B. CONCLUSIONS

- The area around the sodar station was dominated by sea
and land breezes, which occur on a daily basis.

- The northward and southward wind components are sea
and land breezes, which are enhanced by cold frontal
passages in the Santa Barbara Channel, and by
topographic effects.

- Time series reveal three dominant wind components:
morning eastward wind components, afternoon northward
wind components and evening southward wind
components.

- The morning eastward wind component appears to te
synoptically-driven.

- There i1s a strong tendency for counterclockwise net
rotation at an altitude of 25 meters and for clockwise
net rotation above 50 meters.

-~ A persistent secondary peak at the sub-diurnal

frequency of two cycles per day is evident in the
power density spectra analysis.

cC. AREAS FOR FUTURE RESEARCH

The sodar was located 10 meters away from a 30 meter
high gap between two large bluffs. A meteorological tower
was located 440 meters away from the shoreline at the
seaward end of a yier, and thus was less affected by the

shoreline topography. The wind data collected by the
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meteorological tower's instruments are not used in this
thesis, but a comparison of the wind data from the
meteorological tower and the sodar station could provide
insight into just how much of an effect the local topography
had on the sodar wind data.

Another pertinent area for follow-on research would be to
determine if there is 2 definite relationship between
cyclonic mesoscale eddies such as the Gaviota Eddy or the
Catalina Eddy, and cyclonic rotation of the wind in the
vertical within the entire Santa Barbara Channel. A first
step towards investigating a possible relationship would be
to analyze the wind data from other sodar stations used
during the SCCCAMP experiment, as they become available.
Counterclockwise rotation is present in almost every segment
at the lowest level, which is 25 meters above the surface.
Also, two of the segments show counterclockwise rotation in
almost every 1level. It has been suggested by other
researchers that counterclockwise rotation of the sea breeze
can result if the sea breeze is modified by topographically
induced flows. An array of sodar stations surrounding the
topography around the original sodar site at the head of the
Ellwood pier would allow us to measure the net spatial
rotation and gain a more complete understanding of the
effects of local topography on sodar measurements below a

height of 50 1 <S.
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To further our understanding and to develop an ability
to predict the mesoscale wind structure, these questions
need to be explored by observational studies using a data
network dense enough to spatially and temporally resolve .
mesoscale wind variability. Numerical and theoretical
studies are also needed to give additicnal physical insight

into these guestions.
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